$$
\begin{aligned}
& \hline \text { Birzeit University-Department of Physics } \\
& \text { Quantum Mechanics I Phys } 433 \\
& \text { Fall } 2020 \\
& \text { Final Exam, Feb. } 2^{\text {nd }} 2021
\end{aligned}
$$

1. Calculate the following quantitites:
(a) $\langle n l m| L_{z} L_{+}\left|n^{\prime} l^{\prime} m^{\prime}\right\rangle$
(b) $\left[L_{z}, \phi\right]$
2. Consider a spin- $1 / 2$ particle which we shall describe in the basis of eigenstates for S_{z}. The basis for S_{z} are:

$$
\chi_{+z}=\binom{1}{0} \chi_{-z}=\binom{0}{1}
$$

(a) What are the eigenvalues and eigenvectors of S_{y}. Write the eigenvectors of S_{y} (i.e χ_{+y}, χ_{-y}) in terms of those of S_{z}
(b) If the particle is initially in the following state:

$$
\chi=\frac{1}{\sqrt{13}}\left[3 \chi_{+y}+2 \chi_{-y}\right]
$$

What is the probability of getting $\frac{ \pm \hbar}{2}$ if we measure S_{z}, and what is the expectation value of S_{z}
(c) What is the probability of getting $\frac{+\hbar}{2}$ if we measure S_{y}
3. Consider a spin- $1 / 2$ particle with magnetic moment $\mu=\gamma S$ in a uniform magnetic field that points in the z-direction. If at time $t=0$ the x-component of the spin as measured and were found to be $\frac{+\hbar}{2}$. At time t, y-component of the spin was measured and were found to be $\frac{+\hbar}{2}$, what is t ?
4. An operator A has the following two properties

- $A^{2}=0$
- $\left\{A, A^{\dagger}\right\}=A A^{\dagger}+A^{\dagger} A=I$

Show that $\left(A^{\dagger} A\right)^{n}=\left(A^{\dagger} A\right)$
5. At time $\mathrm{t}=0$ a particle in the potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ is described by the wave function:

$$
\Psi(x, 0)=A \sum_{n}\left(\frac{1}{\sqrt{2}}\right)^{n} \phi_{n}(x)
$$

where $\phi_{n}(x)$ are eigenstates of the energy with eigenvalues $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$
(a) Find the normalization constant A.
(b) Write an expression for $\Psi(x, t)$ for $\mathrm{t}>0$.
(c) Find the expectation value of the energy at $\mathrm{t}=0$.
6. A certain 3-level system can have three values of energy associated with 3 stationary states:

Energy	state
0	$\mid 1>$
$\hbar \omega$	$\mid 2>$
$2 \hbar \omega$	$\mid 3>$

(a) An operator \hat{Q} is written in the following form:

$$
\hat{Q}=a|1><1|+b(|2><3|+|3><2|)
$$

with $0<a<b$. What will be the outcome if we measure the operator \hat{Q}
(b) If at time $t=0$, the operator \hat{Q} was measured, and the largest eigenvalue was obtained, write the wavefunction at any later time t.
(c) If \hat{H} was measured at any later time t , what might we get and with what probability.
7. With your choice of basis, find the matrix element of $L \cdot S$. Where L is the orbital angular momentum, and S is the spin.
8. Let $V(x, y, z)=\frac{1}{2} m \omega_{1}^{2}\left(X^{2}+Y^{2}\right)+\frac{1}{2} m \omega_{2}^{2} Z^{2}$, where $\omega_{1} \neq \omega_{2}$. Solve the corresponding Schrödinger equation in cylindrical coordinates

