- 1. Calculate the following quantitites:
 - (a) $< nlm | L_z L_+ | n' l' m' >$
 - (b) $[L_z, \phi]$
- 2. Consider a spin-1/2 particle which we shall describe in the basis of eigenstates for S_z . The basis for S_z are:

$$\chi_{+z} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \chi_{-z} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (a) What are the eigenvalues and eigenvectors of S_y . Write the eigenvectors of S_y (i.e χ_{+y}, χ_{-y}) in terms of those of S_z
- (b) If the particle is initially in the following state:

$$\chi = \frac{1}{\sqrt{13}} [3\chi_{+y} + 2\chi_{-y}]$$

What is the probability of getting $\frac{\pm \hbar}{2}$ if we measure S_z , and what is the expectation value of S_z

- (c) What is the probability of getting $\frac{+\hbar}{2}$ if we measure S_y
- 3. Consider a spin-1/2 particle with magnetic moment $\mu = \gamma S$ in a uniform magnetic field that points in the z-direction. If at time t=0 the x-component of the spin as measured and were found to be $\frac{+\hbar}{2}$. At time t, y-component of the spin was measured and were found to be $\frac{+\hbar}{2}$, what is t?
- 4. An operator A has the following two properties
 - $A^2 = 0$
 - $\{A, A^{\dagger}\} = AA^{\dagger} + A^{\dagger}A = I$

Show that $(A^{\dagger}A)^n = (A^{\dagger}A)$

5. At time t = 0 a particle in the potential $V(x) = \frac{1}{2}m\omega^2 x^2 is$ described by the wave function:

$$\Psi(x,0) = A \sum_{n} \left(\frac{1}{\sqrt{2}}\right)^n \phi_n(x)$$

where $\phi_n(x)$ are eigenstates of the energy with eigenvalues $E_n = (n + \frac{1}{2})\hbar\omega$

- (a) Find the normalization constant A.
- (b) Write an expression for $\Psi(x,t)$ for t > 0.
- (c) Find the expectation value of the energy at t = 0.

6. A certain 3-level system can have three values of energy associated with 3 stationary states:

Energy	state
0	1>
$\hbar\omega$	2>
$2\hbar\omega$	3>

(a) An operator \hat{Q} is written in the following form:

$$\hat{Q} = a|1> < 1| + b(|2> < 3| + |3> < 2|)$$

with 0 < a < b. What will be the outcome if we measure the operator \hat{Q}

- (b) If at time t = 0, the operator \hat{Q} was measured, and the largest eigenvalue was obtained, write the wavefunction at any later time t.
- (c) If \hat{H} was measured at any later time t, what might we get and with what probability.
- 7. With your choice of basis, find the matrix element of $L \cdot S$. Where L is the orbital angular momentum, and S is the spin.
- 8. Let $V(x, y, z) = \frac{1}{2}m\omega_1^2(X^2 + Y^2) + \frac{1}{2}m\omega_2^2Z^2$, where $\omega_1 \neq \omega_2$. Solve the corresponding Schrödinger equation in cylindrical coordinates

Good Luck